Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2592194.v1

ABSTRACT

Background Patients who were SARS-CoV-2 infected could suffer from newly incidental conditions in their post-acute infection period. These conditions, denoted as the post-acute sequelae of SARS-CoV-2 infection (PASC), are highly heterogeneous and involve a diverse set of organ systems. Limited studies have investigated the predictability of these conditions and their associated risk factors. Method In this retrospective cohort study, we investigated two large-scale PCORnet clinical research networks, INSIGHT and OneFlorida+, including 11 million patients in the New York City area and 16.8 million patients from Florida, to develop machine learning prediction models for those who are at risk for newly incident PASC and to identify factors associated with newly incident PASC conditions. Adult patients aged  20 with SARS-CoV-2 infection and without recorded infection between March 1st, 2020, and November 30th, 2021, were used for identifying associated factors with incident PASC after removing background associations. The predictive models were developed on infected adults. Results We find several incident PASC, e.g., malnutrition, COPD, dementia, and acute kidney failure, were associated with severe acute SARS-CoV-2 infection, defined by hospitalization and ICU stay. Older age and extremes of weight were also associated with these incident conditions. These conditions were better predicted (C-index >0.8). Moderately predictable conditions included diabetes and thromboembolic disease (C-index 0.7-0.8). These were associated with a wider variety of baseline conditions. Less predictable conditions included fatigue, anxiety, sleep disorders, and depression (C-index around 0.6). Conclusions This observational study suggests that a set of likely risk factors for different PASC conditions were identifiable from EHRs, predictability of different PASC conditions was heterogeneous, and using machine learning-based predictive models might help in identifying patients who were at risk of developing incident PASC. 


Subject(s)
Anxiety Disorders , Thromboembolism , Dementia , Pulmonary Disease, Chronic Obstructive , Depressive Disorder , Severe Acute Respiratory Syndrome , Diabetes Mellitus , Malnutrition , Acute Kidney Injury , COVID-19 , Sleep Wake Disorders , Fatigue
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.21.22275412

ABSTRACT

The post-acute sequelae of SARS-CoV-2 infection (PASC) refers to a broad spectrum of symptoms and signs that are persistent, exacerbated, or newly incident in the post-acute SARS-CoV-2 infection period of COVID-19 patients. Most studies have examined these conditions individually without providing concluding evidence on co-occurring conditions. To answer this question, this study leveraged electronic health records (EHRs) from two large clinical research networks from the national Patient-Centered Clinical Research Network (PCORnet) and investigated patients’ newly incident diagnoses that appeared within 30 to 180 days after a documented SARS-CoV-2 infection. Through machine learning, we identified four reproducible subphenotypes of PASC dominated by blood and circulatory system, respiratory, musculoskeletal and nervous system, and digestive system problems, respectively. We also demonstrated that these subphenotypes were associated with distinct patterns of patient demographics, underlying conditions present prior to SARS-CoV-2 infection, acute infection phase severity, and use of new medications in the post-acute period. Our study provides novel insights into the heterogeneity of PASC and can inform stratified decision-making in the treatment of COVID-19 patients with PASC conditions.


Subject(s)
COVID-19
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.21.22275420

ABSTRACT

Recent studies have investigated post-acute sequelae of SARS-CoV-2 infection (PASC) using real-world patient data such as electronic health records (EHR). Prior studies have typically been conducted on patient cohorts with small sample sizes 1 or specific patient populations 2,3 limiting generalizability. This study aims to characterize PASC using the EHR data warehouses from two large national patient-centered clinical research networks (PCORnet), INSIGHT and OneFlorida+, which include 11 million patients in New York City (NYC) and 16.8 million patients in Florida respectively. With a high-throughput causal inference pipeline using high-dimensional inverse propensity score adjustment, we identified a broad list of diagnoses and medications with significantly higher incidence 30-180 days after the laboratory-confirmed SARS-CoV-2 infection compared to non-infected patients. We found more PASC diagnoses and a higher risk of PASC in NYC than in Florida, which highlights the heterogeneity of PASC in different populations.


Subject(s)
COVID-19
4.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1031824.v1

ABSTRACT

Infection with the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is associated with onset of neurological and psychiatric symptoms during and after the acute phase of illness1-4. Acute SARS-CoV-2 disease (COVID-19) presents with deficits of memory, attention, movement coordination, and mood. The mechanisms of these central nervous system symptoms remain largely unknown.In an established hamster model of intranasal infection with SARS-CoV-25, and patients deceased from COVID-19, we report a lack of viral neuroinvasion despite aberrant BBB permeability, microglial activation, and brain expression of interleukin (IL)-1β and IL-6, especially within the hippocampus and the inferior olivary nucleus of the medulla, when compared with non-COVID control hamsters and humans who died from other infections, cardiovascular disease, uremia or trauma. In the hippocampus dentate gyrus of both COVID-19 hamsters and humans, fewer cells expressed doublecortin, a marker of neuroblasts and immature neurons.Despite absence of viral neurotropism, we find SARS-CoV-2-induced inflammation, and hypoxia in humans, affect brain regions essential for fine motor function, learning, memory, and emotional responses, and result in loss of adult hippocampal neurogenesis. Neuroinflammation could affect cognition and behaviour via disruption of brain vasculature integrity, neurotransmission, and neurogenesis, acute effects that may persist in COVID-19 survivors with long-COVID symptoms.


Subject(s)
COVID-19
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.16.21253167

ABSTRACT

Many patients with SARS-CoV-2 infection develop neurological signs and symptoms, though, to date, little evidence exists that primary infection of the brain is a significant contributing factor. We present the clinical, neuropathological, and molecular findings of 41 consecutive patients with SARS-CoV-2 infections who died and underwent autopsy in our medical center. The mean age was 74 years (38-97 years), 27 patients (66%) were male and 34 (83%) were of Hispanic/Latinx ethnicity. Twenty-four patients (59%) were admitted to the intensive care unit (ICU). Hospital-associated complications were common, including 8 (20%) with deep vein thrombosis/pulmonary embolism (DVT/PE), 7 (17%) patients with acute kidney injury requiring dialysis, and 10 (24%) with positive blood cultures during admission. Eight (20%) patients died within 24 hours of hospital admission, while 11 (27%) died more than 4 weeks after hospital admission. Neuropathological examination of 20-30 areas from each brain revealed hypoxic/ischemic changes in all brains, both global and focal; large and small infarcts, many of which appeared hemorrhagic; and microglial activation with microglial nodules accompanied by neuronophagia, most prominently in the brainstem. We observed sparse T lymphocyte accumulation in either perivascular regions or in the brain parenchyma. Many brains contained atherosclerosis of large arteries and arteriolosclerosis, though none had evidence of vasculitis. Eighteen (44%) contained pathologies of neurodegenerative diseases, not unexpected given the age range of our patients. We examined multiple fresh frozen and fixed tissues from 28 brains for the presence of viral RNA and protein, using quantitative reverse-transcriptase PCR (qRT- PCR), RNAscope, and immunocytochemistry with primers, probes, and antibodies directed against the spike and nucleocapsid regions. qRT-PCR revealed low to very low, but detectable, viral RNA levels in the majority of brains, although they were far lower than those in nasal epithelia. RNAscope and immunocytochemistry failed to detect viral RNA or protein in brains. Our findings indicate that the levels of detectable virus in COVID-19 brains are very low and do not correlate with the histopathological alterations. These findings suggest that microglial activation, microglial nodules and neuronophagia, observed in the majority of brains, do not result from direct viral infection of brain parenchyma, but rather likely from systemic inflammation, perhaps with synergistic contribution from hypoxia/ischemia. Further studies are needed to define whether these pathologies, if present in patients who survive COVID-19, might contribute to chronic neurological problems.


Subject(s)
Pulmonary Embolism , Atherosclerosis , Neurologic Manifestations , Vasculitis , Severe Acute Respiratory Syndrome , Ischemia , Hypoxia-Ischemia, Brain , Infarction , Arteriolosclerosis , Acute Kidney Injury , COVID-19 , Inflammation , Venous Thrombosis , Neurodegenerative Diseases
SELECTION OF CITATIONS
SEARCH DETAIL